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Abstract:In the framework of gravitational theory of general relativity, this article has systematically and radically solved the problem ofgalaxy formation and some significant cosmological puzzles. A flaw with Einstein’s equation of gravitational field is firstlycorrected and the foundations of general relativity are perfected and developed, and space-time is proved to be infinite, expansionand contraction of universe are proved to be in circles, the singular point of big bang is naturally eliminated, celestial bodies andgalaxies are proved growing up with cosmic expansion, for example Earth’s mass and radius at present increase by 1.2 trilliontons and 0.45mm respectively in a year, in response to which geostationary satellites rise by 2.7mm.
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I. Introduction.Though general relativity obtains considerable success, some significant fundamental problems such as the problemof singular point, the problem of horizon, the problem of distribution and existence of dark matter and dark energy,the problem of the formation of celestial bodies and galaxies, the mystery of solar neutrino, as well as the problem ofasymmetry of particle and antiparticle, always are not solved naturally and satisfactorily. These problems long remainimplies strongly that the fundamentals of general relativity have flaw and needs further perfection. For the purpose,this paper begins with determining the vacuum solution of Einstein’s field equation in the background coordinatesystem, then by correcting rationally Einstein’s field equation from an all new perspective these get problemsremoved.
II.  The static metric of spherical symmetry in background coordinate system.In this paper light’s speed 1c  . According to general relativity, for the static and spherically symmetric case, inthe standard coordinate system (Weinberg, S. 1972; Peng,1998), the correct form of invariant line element outsidegravitational source is given by
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which is called Schwareschild metric and satisfies vacuum field equation 0R  with , , ,t l   as independentcoordinates. Here is proper time, M is the total mass of gravitational source; l is usually explained as standardradial coordinate, which doesn’t have clear physical meaning and only in the far field is approximately viewed as trueradius. In order to describe clearly dynamic behavior and definite position of a particle in gravitational field andenable general relativity to have common language with other theories including Newton’s gravitational theory andcompare results with one another, it is necessary to transform line element (1) into the form expressed in Science
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background coordinates. Hence we take ( )l l r . In this paper r is defined as background coordinate (Zhou, 1983;Fock, 1964) and refers to true radius, that is to say, its meaning is the same as that used usually in quantummechanics or electrodynamics. , ,t   are standard coordinates and can also be viewed as background coordinates,which represent true time and angle. In the following we try to determine ( )l l r by the introducing an additionaltransformation equation, and such operation is allowed is because metric tensor satisfies Bianchi identity and if ametric is a solution of field equation in one coordinate system it is also a solution under arbitrary coordinatetransformation, and the meaning of applying coordinate transformation is to guarantee the new metrics meet fieldequation.According to general relativity the dynamical equation of particle outside source is geodesic equation
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Note that repeated indexes up and down mean sum. For the convenience of practical applification, especiallyrelate to solving acceleration of moving particle, the proper time  need be eliminated, and it is easy
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equation give immediately the following equivalent geodesic equation
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where 0x t , and note that in this paper indexes , , , , , 0,1,2,3v      . Eq. (2) can exist in any coordinate systemand is a basic equation of general relativity, which free particles in gravitational field must satisfy.When a particle of mass m is moving along radius in the static gravitational field of spherical symmetry, givingconsideration to the effect of its speed, in the background coordinate system, in the far field (weak field) the radialcomponent of Eq. (2) should reduce to the following relativistic dynamic Eq. (3）rather than others
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where m refers to relativistic dynamic mass, namely 0
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. Why the radial component should reduce to (3)
is that (3) stands for the equality of gravitational mass and inertial mass and also stands for the speed of light is thelimit one. In order to enable it to reduce to (3) we may introduce a transformation equation as follows

dl
dr
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The correctness of Eq. (4) will be seen later, it determines a coordinate transformation of l r . By means ofseparating variables, the solution of Eq. (4) is easily given by
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Here constant 1C is determined according to the continuity of function ( )l l r on the boundary of source, and

the back Eq. (23) can give out the boundary value ( )el r , er denotes source’s radius ( celestial body radius). Notethat ( 5) makes sure l r for r , prove as follows
Form Eq. (4) we see l for r , and considering of lnlim 0

x
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 Under transformation of Eq. (4), the (1) becomes the following (5) which is an exact solution of vacuum fieldequation 0R  in the background coordinate system 0 1 2 3( , , , ) ( , , , )x x x x x t r    ).
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Note that now ( )l l r is already a concrete function of r , which is decided by ( 5 ) and can not be writtenout explicitly. And here , , ,t r   are independent coordinate variables.
In the far field, the line element (6) provides 00
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and introducing them into (2) and putting 1  , 0d d   , drv
dt
 , we obtain
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which is equivalent to Eq. (3).  Proof: assume 0,d d   0
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, from equation (3) we have
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, which immediately yields (7).

By far, we may say that (6) is just the appropriate line element expressed in background coordinate system
0 1 2 3( , , , ) ( , , , )x x x x x t r    , which we look for and satisfies vacuum field equation and entire requirements onphysics.Obviously it is, however neglected usually, necessary to identify which of the solutions that satisfy fieldequation in the same coordinate system is correct or more correct. As a example worthy of mentioning, we point outthat applying directly l r in (1), namely l is directly explained as background coordinate, gives the following
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Another exact solution expressed in the same background coordinate system 0 1 2 3( , , , ) ( , , , )x x x x x t r   
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However, in accordance with (8) the corresponding geodesic can’t reduce to (3) in weak field, instead it reduces to
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equation distinctly reduces to Eq. (9 ), which isn’t Eq. (3 ). It is easily found that Eq. (9) not only goes against theelementary principle of equality of gravitational mass and inertial mass but also leads to incorrect conclusion thatgravitational field becomes repulsive one for a particle whose speed exceeds 0.58c. Hence Eq. (9) must be wrong,and implies (8) can’t describe high speed and has a certain shortcoming compared with (6).From the wrong Eq. (9) that line element (8) implies we understand why l in (1) cannot endow themeaning of background coordinate.Note that the angle of orbital precession of Mercury described by (6) is still the same as that described byline element (8) (Peng, 1998), the angle of orbital precession doesn’t change under the transformation of radialcoordinates. On all accounts, (6) is the correct line element expressed in background coordinate systemAnd again, though general relativity is fully covariant and can use all sorts of coordinates, we must usebackground coordinates when we take geodesic equation to compare with Newtonian gravitational law which isexpressed in background coordinates, otherwise they don’t have the common language and the meaning of eachterm in geodesic equation is unclear and the comparison is distinctly ruled out. This shows that the specialadvantage of using background coordinates that have clear physical meaning. And certainly, using backgroundcoordinates general relativity becomes naturally flat space-time’s gravitational theory and combines practicemore intuitively and has common language with other theory of physics. In a word, using backgroundcoordinates the coordinate’s derivatives with respect to time represent speed and acceleration we can directlydecide acceleration of a particle by solving Eq. (2)In terms of the observational theory of general relativity, so-called background coordinates are just thevalues measured by the rest observer in the distance, and as for r , it is just the length from origin ofcoordinates to another point, which is measured by the observer, and , ,t   are the time and anglerespectively, which are measured by the observer.Of course, on earth using which sort of coordinates is in accordance with specific conditions and questionsto demand to solve, and sometimes we have to use the sort of coordinates whose physical meaning is not tooclear in order to simplify mathematical calculation, but this certainly misses out or covers up some importantinformation and even can not link theory with observations.
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Finally must point out: though Schwareschild standard radial coordinate isn’t explained as backgroundcoordinate (namely true radius) in standard textbooks one treats it as true radius involuntarily in practice, thismakes certain confusion on logic and concept. For example, while computing deflected angle of light on Sun’ssurface, one takes the value of Schwareschild standard radial coordinate on the surface for Sun’s true radius,serious question doesn’t happen thanks to the difference between l and r slight (see the calculated result insection V). In this paper, in order to hint the difference on concept Schwareschild radial coordinate is denoted by
l and true radius is denoted by r , therefore this paper is actually to perfect and refining the fundamentals ofgeneral relativity. As a result of careful calculation step by step, we find Einstein’s field equation may change, andby applying the revised field equation we see that many difficult problems of cosmology can all be readily solvedand maybe new physics will be brought out.
III. The Amelioration of Einstein’s gravitational field equation.It is seen from the above discussions that in spherically symmetric gravitational field, in the case of weak fieldapproximation, 00
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Tg . This isbecause the coupling constant  relates to the form of weak field approximation metrics g and is confirmed inthe course of solving weak field approximation metrics, and the change of the metrics means the couplingconstant need also change. So, the content of the section III is actually to renew solving under certain conditionEinstein’s field equation and in the same course decide the coupling constant  .And now we set out to reconfirm the coefficient  by solving weak field approximation metrics g .Here energy-momentum tensor T  p U U    pg , and four contravariant speed dxU
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Hence, we obtain 2
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Note that 1 2 3, ,x x x y x z   . On the other hand, for the weak field case Bianchi identity can give the ordinary



Page 7 Journal of Physics (ISSN: 2276-6367)

conservation law , 0T    .
Proof: because 2
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That is to say, vh  worked out here is indeed reasonable approximate solution of field equation with 4 G  .
And again, as a special case of spherical symmetry, if the source’s density is a constant, namely 0
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
we can infer from (11) a very useful and significant result

p  which can be regarded as the form of pressure in weak field in the case of that density  is even. It isobviously too subjective to take gravitational source’s pressure for zero in advance, in fact, by intense calculationwe see that the pressure takes negative value where matter exists and the places where matter exists turn out tobe so-called pseudo-vacuum ( Gondolo, P. 2003; Guth, 1981). And obviously the pressure as gravitational sourceisn’t so-called thermodynamic pressure.To sum up, we can conclude that in any coordinate system gravitational field equation is revised as
1 4
2

R Rg GT    , (12)where positive 4 replaces the previous 8 , obviously Eq. (12) preserves general covariance.Of course, line element (6) satisfies Eq. (12) because both p and  vanish outside gravitational source andEq. (12) becomes the vacuum field 0R  outside source, whose form is the same as the previous.
IV. Applications and tests of Eq. (12) in cosmology. .It is decided by practice in the final analysis whether a theory is right or not. The application of Eq. (12) incosmology proves strongly that the revision is successful.With l as standard radial coordinate, in the co-moving coordinates Friedmann-Robertson-Walkermetric is given by (Weinberg, S. 1972; Sawangwit, U.2005)

2 2 2 2 2 2 2 2 2
2

1( ) sin
1

ds dt a t dl l d l d
kl

         
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Here ( )a t is universe expansion factor, and metric 00 1g   , 2

11 2

( )
1
a tg
kl




, 2 2
22 ( )g a t l ,

2 2 2
33 ( ) sing a t l  , 0( )g    , and substituting they into (11) yields the following equation likeFriedmann’s

 2 24( ) ( )
3
Gda t k a tdt
    (13)

Consequently k must be negative, cosmos is so far proved infinite or open. And again, in virtue of
; ; ; ; ;( ) ( ) 2 ( ) 2 ( ) 0v

vT nU U U U U U U   
           , it follows that 3 3( ) 0d a pda   and

1 0pd d
n n

       
   

(14)

Here n represents the density of particle (galaxy) number. Since  is assumed homogeneous, we may use the
weak field condition p   proven above, and substituting it into Eq. (14) yields 0d  , that is to say,

0p    or
0p const      , (15)which is the most appropriate expression of energy conservation in infinite spacetime and indicates the singularpoint of big bang did not exist. In addition, (14) implies the mass of galaxy changing with cosmic expansion since

n stands for per particle mass. And further, the solution of Eq. (13) , namely expanding factor, is given by
04( ) sin

3
Ga t A t   

   
 

. (16)

Here A is a positive constant. So far cosmic expansion and contraction are proved to be in circles like aharmonic oscillator. (16) Means that the expansion of universe is decelerating and its contraction is accelerating，this fact is compatible with the newest data observed, see figure 1 ( Dominik J, 1993; Dai zi Gao, 2004; Fa YinWang, 2009). We realize that the conclusion universe’s expansion is accelerating is wrong at all. In fact adecelerating expansion is more acceptable for philosophy. We should be sobering that the accelerating universe isnot from direct measured data and instead it depends quite on cosmic model and if something is wrong with themodel the conclusion certainly fails.Now we try to derive the relation between distance and red-shift. May as well put 0( ) 1a t  , the light
from a galaxy to us satisfies (Weinberg, S. 1972)

 
11 z
a t

  and 2 ( )
dadz
a t

  . Here z denotes red-shift. And
writing 0

02
0

4
3
G q
H
 

 , 0 0( )H t H ，we infer from Eq. (13)
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1 2

0 0 0(1 )(1 )daH a H q z q
dt

     , and 2
0 0(1 )k H q   .

Note that the subscript “0” refers to the present-day values. For the propagation of light line 2 0ds  , then
2( ) (1 )

dt dz dl
a t H kl
   


，

0

Z dz
H
 20 1

la dl
kl . al Denotes the galaxy’s invariant coordinate. In view of

luminosity-distance (1 )Ld z 
0

la

 21
dl
kl

, we work out a new relation between distance and re-shift
2

0 0 0
0

0 0

( 1) 1 ( 1)( 1)1 ln
1 1 1L

z q q z qzH d
q q

     


  
(17)

As 0z , expanding the right hand side of (17) into power series with respect of z , (16) becomes
2

2 30 0 0
0

1 3 2 1
2 6L
q q qH d z z z  

      ,which is the same result as that obtained via pure kinematics. The curved line in figure 1 (Dai zi Gao, 2004; FaYin Wang, 2009 ) is the image of (17) with 0 0.14q  and 1 1
0 70H km s Mpc    . The situation describedby the curved line agrees well with the recent data of observations. Note that recent observations show that

0
0 2

0

4 0.1 0.05
23

Gq
H
  

    . ( Linder, E, V. 2003; Hamuy, M, 2003; Alcaniz, J. S. 2004 )

Figue 1. The Recent Hubble diagram of 69 GRBs and 192 SNe Ia.

Note that Distance-Modulus is equal to 5lg 25Ld  , and the unit of Ld is Mpc
Next we calculate “our” cosmic age, namely the time from last ( ) 0a t  (at the moment, t may as well

take 0 ) to today. Writing 0 0( )H t H , from 2 2
3 3

a G GH ctg t
a

    
    

 

 , in the case that 0q takes 0.14
“our” cosmic age is calculated as
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1

0
0

0 0

=
tg q

t
H q

 = 101.37 10 a , (18)

which agrees with observations . Besides, we can also compute how a galaxy’s mass changes with time. Writing agalaxy’ mass ( )m t , taking account of 3( ) ( )const Nm t a t   , where N is equivalent to a proportionalcoefficient, immediately it is concluded that
1 2

3 3
1 2

( ) ( )
( ) ( )
m t m t
a t a t

 , (19)

which implies that galaxies can grow up without mergers and consists with recent observations (Genzel,R.2006). The formula (19) defines how a galaxy mass changes with evolution of universe.And again, because any point can be thought the centre of universe’s expansion，（19）can be looked as therule of mass’s change of any celestial body or galaxy. And applying (19) to the earth of today, we find that theincrease of the earth’s mass in a year is
3

140
0 0 0 03

0

( 1)[ 1] ( ) 3 12.46 10
( )

a tm m t H m kg
a t


      (20)

And also deduce that the expanding speed of the radius of the earth is today 0 0 0 0.45v H r mm a  .
By the way, from 0

0 0
4( ) sin 1

3
Ga t A t   

   
 

it can be decided that constant 0
0

41 sin
3
GA t   

  
 

,
and further we have the following relation of reshift Z and universe time t

0 0
0

1 4 41 sin sin
3 3( )
G Gz t t

a t
      

      
   

.
Here t is the time at which photons was given out from the celestial body. The relation can be used toevaluate low limit of celestial body age.We can also derive the density of galaxy number of any time t . Take 0n for number density of galaxy of

today 0t , and use proper speed p pv Hd ，where pd denotes proper distance of galaxy , then
p pdd Hd dt ，further

0
0

exp
tp

t
p

d
Hdt

d
  ，and since galaxy number conserves, namely 3 3

0 0p pnd n d ，

number density of galaxy of any time t reads therefore
0

0 exp 3
t

t
n n Hdt 

27
4

0 0
4 4sin sin

3 3

GG Gn t t
     

  
 Which is the law that the density of galaxy number changes with time?

V. Exact interior solution of Eq. (12) and mechanism of celestial body’s expansion.In the case of static spherical symmetry, inside a celestial body (gravitational source), with l as standard
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radial coordinate the exact interior solution of Eq. (12) is given by.

2ds  
1

2
( )exp C + ( ) 1el

l

lf l dl
l
     

   


2dt
1( )1 G l

l
 

   
 

2 2 2 2 2( sin )dl l d d    (21)

in which 2
0

( ) 4 ( )
l

l l l dl    , 3
2( ) 4 ( ) ( )Gf l l p l l
l
     , ( )e el l r . Constant 2

2ln[1 ]
e

GMC
l

  , it makes
sure 00g is continual on the boundary of the celestial body. Note that as scalar = ( )= ( )l r   , = ( )= ( )p p l p r ,
and outside gravitational source both p and  vanish, namely ( ) ( ) ( ) ( )=0l r p r p l     for er r .In order to determine the interior form of (21) in background coordinates, Eq. (4) is naturally extended as insidesource

dl
dr


( )1 G l
l


 exp ' ' 'G dx dy dz


 
 
 
 . (22)

Obvious under the transformation of Eq. (22), line element (21) turns into
2ds  

1
2

2
( )exp C + ( ) 1

le

l

lf l dl dt
l
      

   


exp 2 ' ' 'G dx dy dz


 
 
 
 2 2 2 2 2( sin )dr l d d    . (23)

Here  l l r is a specific function of r , which is determined by Eq. (22). Line element (23) is just the exact
solution looked for and expressed in background coordinate system 0 1, 2 3( , , ) ( , , , )x x x x x t r    .  Note that
the solution of Eq. (22) satisfies the initial condition  0 0l  . In fact, because there is no acceleration tendency for
every direction at the centre gravitational source, 00dg dr must be zero, and from (23) we have

00 000 dg dgdl
dr dr dl

 
1 1

2
( ) ( )( ) 1 exp C + ( ) 1el

l

dl l lf l f l dl
dr l l

            
     

 ,
which indicates   0f l  at the centre, and so that  0 0l l  at the centre. And if 3

3
4 e

Mconst
r




  , then
2

3

3' ' '
2 2e e

M Mdx dy dz r
r r




  ， 2 3
30

( ) 4 ( )
l

e

Ml l l dl l
r

    , the solution of Eq. (22) is easily given by
3

2
3 3ln 1e

e e

r GM GMl l
GM r r

 
    

 

2
3 5

3 3
1
406 e e

GM GMr r r
r r

  
         

3exp( )
2 e

GM
r

 (24)

Though energy density  , generally speaking, isn’t a constant, we may take its average value or piecewiseintegrate on r in practice for the convenience of calculation. As an important example, on the surface of the Sun
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86.96 10er r   m, M = 301.99 10 kg, using (24), that is taking average value of  , we can work out the

surface’s 8( ) 6.96 10el l r   m 1720 m, which is highly equal to the Sun’s radius. And likewise, we can workout 6371 0.00038l km km  on the Earth’s surface, and this almost equals the Earth’s radius 6371km.So far, using the continuity of ( )l l r not only we can determine the constant 1C but also can calculate thedeflected angle of light line on the surface of Sun. For photon’s propagation outside Sun from (6) we have
 2 2 2 2 2 2 22 20 1 exp( ) sinGM GMds dt dr l d d

l r
           

 

 
1

2 2 2 2 2 22 21 1 sinGM GMdt dl d d l
l l

  


            
   

.
Similar to former calculation, the deflected angle is given by 4 4 1.78''

( )e

MG MG
l l r

    , which is more consistent
with observational result (1.89'' ) compared with former theoretical value 4 4 1.75''

e

MG MG
r r

    .
On the other hand, the conserved law gives

    13 22 ( )
2

dp G p l p l lG l
dl

  
     

 
. (25)

On the boundary the gravity acceleration should be continual, according to (2), using (4), (6), (22), (23) we have
1
00( )

er r


1
00( ) 

er r


, that is, 11 00( )dgg
dr er r


11 00( )dgg
dr


er r


,  it follows that
21dl d GM

dr dl l
       er r



1

2
( )exp C + ( ) 1

le

l

dl d lf l dl
dr dl l

         
     

 er r


And after simplifying further, it becomes
3[4 ( )] 2 2 ( )e e e e el p l l GM M l G l       , (26)which is the boundary condition p must satisfy, and the condition defines p to be negative within celestial body.For general cases, inside source, gravitational field is still which means ( )l l r r  , 2 1GM

r
 , and from

(26) the boundary pressure 3

3
4 e

Mp
r




    , which is consistent with (11). Here  denotes average As an
emphasis, we must point out that when (1) or (6) is applied to a mass point of the surface of the static source, itexists that 2 220 (1 )GMds dt

l
    , which indicates that 21 GM

l
 of static source is nonnegative.

Next let us weak, consider a small volume iV of mass im inside source, idV denotes iV ’s change caused from
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the Expansion of space-time, in view of Eq. (12) we have i i idm p dV  ，hence

 
3

3

( )( ) ( )
( )

i i
i i i i i

i i

m dV da td d p p
V V a t

         , which means that for arbitrary point it holds that
3

3

( )
( )
p da t

t a t dt
  
  


(27)

(27) determines how matter density changes locally. It is seen from (27) that when celestial bodies expand withcosmic expansion its density may be unchanging in the case of 0p   . So far, we deduce that bursts of celestialbodies and formation of earthquakes originate both from unceasing accumulation of inside matter and change ofdistribution; and it is the negative pressure that gets matter in celestial body continuously produce. (NashedG.G.L,2011)
VI. Cracking of the puzzle of dark matter.The negative pressure as important gravitational source is invisible, and it is the negative pressure thatappears as the form of dark matter and leads to the phenomenon of missing mass, or say that so-called dark matteris just the negative pressure, this fact are showed as follows.Speaking generally, within a galaxy the metric field is weak field, and when a galaxy is treated as a celestial
body of spherical symmetry, according to the discussion in section III, within the galaxy ( 0 er r  ) pressure

0p const  . And from (11) we infer 3
3
4 e

Mp const
r

   , and further we have
00

3ph G dx dy dz

       1 2 2 2

0 0 0
4 6 2

r r re
eG r r dr rdr rdr G pr G pr           According to (2 ) the gravity acceleration (or gravitational field strength) within the galaxy is given by

1 200
00 2 20

1 2 ( )2 2
2 2

rdh G Gm rg Gpr r dr Gpr
dr r r

        where 2

0
( ) 4

r
m r r dr   , and g may be positive or negative since pressure is negative, and the negative

g indicates the direction of acceleration is towards centre. And according to (2 ) the corresponding round orbitalspeed Tv is given by
2 2 ( )2

2T
Gm rv gr Gpr
r

     , (28)

From (28) it is seen that when ( )m r looks even on the verge of zero near the centre of the galaxy the speed vcan become high too, and this explains the phenomenon of so-called missing mass. Again, from (28) we get
2 32 4 ( )Trv Gpr Gm r   , and if v is a constant between 1r and 2r , differentiating this equation and
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using 2 2 2 1
1 2 13

1

( )( ) 3( ) 2
2 2 2T

e

Gm rGm r MGv r r r Gpr r
r r r

       yield
2

2 1
1 2 12 3 3 2 2

1

( )9 3( ) 3
2 4 4 4
T

e e

v m rM Mr r r p r
Gr r r r r r


   

        (29)

which is the condition a typical spiral galaxy with a halo satisfies. May as well set 1 2r nr ( 0 1n  ), then
2

1

2 2 3 1
2 1 23

3 ( )( ) ( ) 4 (1 )
r

r
e

M m rm r m r r dr n r
nr

      ,
and in consideration of 20 ( )m r M  we concluded that

3 31
2 2

( )0
3 (1 ) e
nM m rr r
nM n


 


(30)

Which indicates it is impossible for 2r to arrive at the galaxy’s edge er in the case of 2 3n  . Obviously, if
 begins to decrease from 2r to er both Tv and g begin to increase. Of course, it isn’t easy to observe the
speed of the particles between 2r and er because near the edge er matter becomes virtually very thin. The
curve in figure 2 describes the situation predicted by (28) and (30), and it is in conformity with recent
observational results（Cayrel, R. 2001）.

Figue 2. The velocity distribution diagram

So far, we conclude that so-called dark matter is just the effect of the negative pressure or say that thenegative pressure is just so-called dark matter, and the dark matter (Genzel, R. 2006; Baojiu Li, 2008) puzzlehas naturally been cracked. Of course, so-called dark energy problem is also removed since cosmologicalconstant is reconfirmed as zero again and the concept of dark energy becomes unnecessary in the newamendme
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VII. Motion in centre field and formation of galaxies and background photonsEquation (15) indicates that not only space is expanding but also celestial bodies or galaxies themselves, that is,like a expanding balloon, the ink prints on it also expand at the same proportion. This is just the elementarymechanism of galaxy formation. In order to illuminate galaxy formation clearer we look into the motion in centre

field. Let M denote mass of centre body. Generally speaking，its gravitational field is weak, geodesic reduces to
Newton’s law, for a object moving around the centre body we have

2 2

2

4 r GM
T r


 , (31)where r is the radius of round orbit, T is revolution period. Noticing M to be variable now and to satisfy (19)and using (31) we infer
 

2
31 ( ) ( )r r T T a t t a t r       from t to t t  . And putting 0t  we have

2
3

dr r dTv rH
dt T dt
   . (32)

where the final term is explained as perturbation and gravitational radiation. For instance, apply (32) to themotion round today’s Earth, for geostationary satellite, neglecting perturbation and gravitational radiation, namelytaking 0 0dT  we find that its orbit radius will increase by 0 2.7r  mm in a year. And for the motion of Moon,observations show that its orbit radius increases by 0.38cm in a year today, then using (32) we conclude that theorbit period 0T of Moon will slow by 0.0001s in a year today.When (32) is used to the edge of a spiral galaxy, it is concluded that the terminuses of spiral arms graduallystretch outward. Of course, other points near the terminuses continuously follow and form involutes. See thefollowing figure 3.

Expanding centre Gradually stretching out arm
Figure 3: sketch map of formation and evolution of spiral arms

Eq. (32) means that separating speed from centre lies on v rH neglecting perturbation and radiationdamp.
It is important to realize that the spin of a system is the composition of orbit motion of many particles, spinand orbit motion do not have essential difference. And for celestial body’s expansion, lying on v rH means itsspin period not to change.
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Note that the existence of Eq. (32) doesn’t mean the destruction of conservation of angular momentum on wholebecause mass M is connected with the factor ( )a t , which embodies the interaction among galaxies, thenonconservation of angular momentum of individual galaxy is admitted.Again, the fact that space, celestial bodies and galaxies simultaneously expand proportionally links thehomogeneity of today’s universe in a large range with that of early universe in a small range, because the largerange is just the amplification of early the small range. Background radiation has proven early universe to behomogeneous in quite small range. Therefore our conclusion is in accordance with observations.The following figure 4 is the global picture of galaxy evolution and distribution under const  in differenttime stages，the earlier, the smaller and the denser. Figure 5 is the picture of galaxies seen by today’s telescope, andthe farther, the earlier and the evener.Note that the horizon at moment 0t  is now according to (16)

0
0 0

0

41( ) ( ) sin
( ) 3 4sin

3

t t

h
G dtd t a t dt t

a t Gt

 
 

 
          

 

 

That is to say, so-called horizon puzzle or homogeneity puzzle does not exist in the present theory framework atall, and need not introduce inflation like a patch on theory.Naturally, the microwave background radiation measured today is the compositive effect of various photonsemitted by innumerable galaxies remote, whose distances to us are unidentifiable，which comprised infinitely deepthin gas and could absorb any frequency photon and therefore possess black body feature.Note that the state that horizon vanishes is unobservable though ( ) 0hd t  for 0t  , because anyobservation carried out needs a time lag t

Earlier              Early             Today

Figure 4. The global picture of galaxy evolution and distribution in different stages
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Background radiation source

Galaxy Telescope
Figure 5: The actual picture of galaxies seen by today’s telescope

Now, refering to figure 5 we try to solve all-direct galaxy number GdN between z z dz  ,which is an observational quantity for our telescope today. From the discussion above we know proper distance ofgalaxies of reshift z is given by
2

0 0 0

0
0 0 0

( 1) 1 ( 1)( 1)1 ln
1 1 1

Z

p

z q q z qdzd
H H q q

     
 

   ,
where 2

0 0 0(1 )(1 )H H q z q    , and number density of galaxies near proper distance pd or reshift zreads
0 3

0 0 00

3exp 3 exp (1 )
1

t z

t
n n Hdt n dz n z

z
   

  ,
where z is reshift of galaxies near proper distance pd , we easily obtain the following result

2 24 4 p
G p p p
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23
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3 2
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1 1( 1) (1 )(1 )

z q q z qn z dz
qq H q z q

      


    
,

where 0n take the value of number density of the galaxies around us.Finally, we prove that the dark body spectrum of background photons keep on in the course of the propagation.Assume that background photons arrive at B from A between At t and Bt t . See the following figure 6.

Figure 6：the travelling background photons toward us.
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Take ( , )t d   for background photon's number density between frequency d    at the time

t . Assume that photon number is conserved in the course of propagation, then we have
3 3( ) ( , ) ( ) ( , )A A A A B B B Ba t t d a t t d     

Take AT for the temperature of background photons at the time At t , according to Boltzmanm
statistics law, the average kinetic energy of photons equals 3

2
T ( here Boltzmanm constant takes 1)
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.
Note that h represents kinetic energy of a photon of frequency  . And using reshift relation
( ) ( )A A B Ba t a t  , where A and B are the frequency of the same poton at the time At t and Bt t ,it is proven that
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Where BT denotes the temperature of background photons at the time Bt t . If background photons at
position A satisfy black body spectrum, that is to say, 28( , )

exp 1
A A

A A A
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dt d h
T
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

( Planck law)，
then using ( ) ( )A A B Ba t a t  , namely ( ) ( )A A B Ba t d a t d  ，we obtain
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So far our conclusion has been proven. Note that if 0At  ， (0) 0a  ，then any 0A B   , whichimplies that the background photons to come to us were given off in different time, and the photons whosere-shift are bigger were given off in earlier time and from farther source. As a result, we get the conclusionthat the lower frequency of background photons measured today is, the smaller their density fluctuation oranisotropy is which is in accordance with recent observation. This property of cosmic background radiationindicates just big bang did not exist because the background photons measured today were never given off bythe so-called final scattering surface that big bang implied, if they were so, the density fluctuation or anisotropyof different frequency’s background photons should be consistent or synchronous and should not have thing
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to do with frequency as matter distribution on the final surface is definite at the same time and theinformation’s carried by different frequency’s background photons react to the same surface’ situation ofmatter distribution, but fact is opposite. That is to say, cosmic background radiation is never they remain ofso-called big bang.Though the temperature of background photons become lower and lower due to their re-shift, theaverage temperature of cosmic matter should be unchanged all along, the singular point of big bang should notexist. In the new theory cosmic temperature keeps unchanged since cosmic energy density is provenunchanged, all observations can parallel and even better be explained. The temperature of background photonsobserved today never represents that of universe today, it is worthy of laying stress that the temperature ofuniverse means the average of all matter’s temperature but not only background photons’ temperature, andtalking about temperature leaving matter has no meaning. In principle, cosmic temperature can be measureddirectly, we may suppose that the temperature of the Milky Way represents that of universe because it is amoderate galaxy, that is to say, the temperance of universe is far higher than that of background photonsmeasured today..

VIII. Quantum process of continuous creation of matter in celestial bodies

P   Tells us that the negative pressure in celestial bodies is actually a negative energy field, and there
p and  excite with each other and generate simultaneously. Connecting with particle physics it is naturallydeduced that in celestial bodies many particle-antiparticle pairs (including neutron and antineutron, proton andantiproton, electron and positron and so on) can ceaselessly produce and annihilate, the antiparticles lie innegative energy level------can’t be observed, the particles lie in positive energy level, and the absolute value ofenergy of particle and antiparticle is equal. Let t denote the lifetime of a kind of particle-antiparticle pairs,namely the average time from production to annihilation, according to uncertain principle the range E ofenergy satisfies

2
E

t
 


 . (33)which shows that instantaneous energy of new particle may be very high. Note that not all of the particlesannihilate as soon as they come into being, only those which don’t not have opportunity in the time t to reactwith the surrounding particles or to collide and change their energy can annihilate, once the reaction with otherparticles or the collision occur the annihilation no longer carry out, and in this case the negative energy fielddetains a negative energy antiparticle while the particle becomes constituents of matter. Therefore, the negativeenergy field is too a quantum field to consist of various negative energy antiparticles. Of course, an antiparticle ofenergy  can be excited to energy  by a meson of energy 2 and becomes the antiparticle that can beobserved. For no other reason than that many antiparticles lie in negative energy level and can’t be observed, weperceive that particles and antiparticles aren’t symmetrical. As a result of general relativity, Eq. (15) in section IVexposes already that matter and antimatter are symmetrical.Obviously the negative pressure field, not only thermal nuclear reactions, provides energy source of starradiation , therefore the mystery of solar neutrino doesn’t exist in the new theory framework.And considering of tunneling effect in quantum theory, many nuclear reactions are able to complete slowly incelestial bodies even if the temperature ( average kinetic energy of particles ) is low, which implies that in the caseof low temperature elements can also compose. As for what kind of nuclear reaction is in evidence, this depends ontemperature of celestial bodies. And as a result, the abundance of elements in a celestial body is the effect ofvarious nuclear reaction for long time.For a celestial body of temperature T, we may as well treat all atoms in it as a open thermodynamic system,whose giant distribution function according to quantum statistics is given by
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Where iN denotes the number of atoms of i-th kind element. And let im denote its mass, the total energy
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Here i amounts to the chemical potential of the group，T is the temperature of the celestial body,
namely average kinetic energy of all atoms， k is Boltzmann constant. From above relation we have forarbitrary two elements A and B
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B B
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
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
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


(34)

which decides the abundance of elements in a celestial body. Observations of astronomy show that elementabundance is different in different celestial bodies, which is consistent with (34). Observations of astronomyshow that the abundance of elements is in accordance seen from large scope, which implies both temperatureand chemical potential are uniform seen from large scope. Observations of astronomy show that all elements inother celestial bodies can also be found out on the earth, which implies that the origin of various elements is inthe same way, namely they originate all production and annihilatation of particle-antiparticle pairs.
IX. Conclusions: Density and pressure of universe do not change all along ( Massimiliano, 2001), the singularityof big bang didn’t exist (Mei Xiaochun, 2011) and matter in universe is produced continuously and slowly. Withcosmic expansion celestial bodies and galaxies expand too, which is just the fundamental mechanism of celestialbody or galaxy formation. The dark matter to appear as negative pressure is just the antimatter that lies innegative energy level and thus cannot be observed, which cannot exist alone and must be accompanied byordinary matter.

X. Appendices.

A:  the derivations of (21) and (25)According to description of general relativity, in the case of static spherical symmetry, in standard coordinatesystem the form of invariant line element is written as
 2 2 2 2 2 2 2 2( ) ( sin )ds d B l dt A l dl l d d          ,
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Where l is called standard radial coordinate, space-time coordinate 0 1 2 3( , , , ) ( , , , )x x x x x t l    .
00 ( ),ttg g B l   11 ( ),rrg g A l  2

22 ,g g l  2 2
33 sin ,g g l   the other components

equal zero. From the definition of inverse Matrix we work out 00 1g
B

  , 11 1g
A
 , 22

2

1g
l
 ,

33
2 2

1
sin

g
l 
 , the others equal zero. And from connection 1 ( )

2
g ggg
x x x
   

   

 
   

  
, we work

out 1
11

'
2
A
A

  0
01

' ,
2
B
B

  2
33 sin cos    , 3

23 cot ,  1 2
33 sin ,l

A
   2 3

12 13
1,
l

   

1 11 233
22

1 sin ,
2

g lg
l A


    



/
1
00 ,

2
B
A

  the others are zero, where ' dAA
dl
 ' dBB

dl
 .  And

form ,,R      
                , we work out 00

'' ' ' ' '( )
2 4 '
B B A B BR
A A A B lA

     ,
22

' ' 1( ) 1
2
l A BR
A A B A

     , 2
33 22sinR R , 11

'' ' ' ' '( )
2 4
B B A B AR
B B A B lA

    , the others are zero.
On the other hand ( )T p U U pg      , 1g U U

    , 3T g T p
    ,

and for the case of static spherical symmetry ( ),p p l ( ),l  0U B  , 0iU  , then we work
out 00 00

(3 )
2 2
T B pT g 
  , 2 2

33 33
( )sin

2 2
T pT g l  
  , 2

22 22
( )

2 2
T l pT g  
  ,

11 11
( )

2 2
T A pT g  
  the other corresponding components are zero. Field equation (12) is equivalent to

14 ( )
2

R G T Tg    , we get the following three independent equations:
00

11

2
22

'' ' ' ' '( ) 2 ( 3 )
2 4 '

'' ' ' ' '( ) 2 ( )
2 4

' ' 1( ) 1 2 ( )
2

B B A B BR G p B
A A A B lA
B B A B AR G p A
B B A B lA
l A BR G p l
A A B A

 

 

 

       

      

       And the other corresponding equations are identities. Then we have

00 11 22
2 2 2 2

1 1 ' 4
2 2
R R R A G
B A l l Al lA

        , namely '
21 4l G l

A
     

 
,

And since (0)A is limited, we infer 1( )( ) 1 G lA l
l
 

   
 

, where 2
0

( ) 4 ( )
l

l l l dl    .
On the other hand, the conservation law ; 0T   gives ' 2 'B p

B p
 


, then from



Journal of Physics (ISSN: 2276-6367)                                                                                 Page 22
1 2

22 2
( ) 2 '(1 ) ( ' )(1 ) (1 ) 1 2 ( )

2
l G l G p GR l G G p l

l p ll
     


 

           
, after being simplified

    13 22 ( )
2

dp G p l p l lG l
dl

  
     

 
.

And again, from   13 2' 2 ' 2 2 ( )
2

B p G l p l lG l
B p

 


         
, we obtain

1

2
( )( ) exp C + ( ) 1

le

l

lB l f l dl
l
      

   
 ,

Where 3
2( ) 4 ( ) ( )Gf l l p l l
l
     , and constant 2

2ln 1
e

GMC
l

 
  
 

, it makes sure ( )B l is continuous on
the bound er (surface of source). Note that the value of ( )el r on the bound is determined by (24).
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Vision luminosity received by telescope is defined as 2
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