On The Generalized Gaussian and Mean curvatures in E_{1}^{n+1}

Ayşe Yavuz, F. Nejat Ekmekci

Department of Secondary Science and Mathematics Education, Necmettin Erbakan University, Konya, Turkey

Department of Mathematics, Faculty of Sciences, Ankara University, , Ankara, Turkey

Abstract:
Before now in [2] the generalized Gaussian and mean curvatures were proved in Euclidean space, but now we prove the theorems in Lorentzian Space. In our previous paper, we have studied higher order Gaussian curvatures in Lorentzian space. This allowed us to prove that

$$\varphi(P) = \prod_{i=1}^{n}(1 + \varepsilon_{i}r_{i})$$

In addition to Gaussian and mean curvatures, K_{r} and H_{r} for parallel surfaces in E_{1}^{3} are given. In this study by means of higher order Gaussian and mean curvatures we calculate the generalized curvatures K_{r} and H_{r} for parallel surfaces in E_{1}^{n+1}.

Keywords: Gaussian curvatures, mean curvatures, parallel hypersurfaces, higher order Gaussian curvatures.

1. Introduction

For an integer v with $0 \leq v \leq n$, changing the first v plus signs above to minus gives a metric tensor

$$<v_{p},w_{p}> = -\sum_{i=1}^{v}v_{i}w_{i} + \sum_{j=v+1}^{n}v_{j}w_{j}$$

of index v. The resulting semi-Euclidean space R_{n}^{v} reduces to R_{n} if $v = 0$. For $n \geq 2$, R_{1}^{n} is called Minkowski n− space if $n = 4$ it is the simplest example of a relativistic spacetime.
The common value v of index g_{p} on a semi-Riemannian manifold M is a called the index of $0 \leq v \leq n = \dim M$. If $v = 0$, M is Riemannian manifold; each g_{p} is then a (positive definite) inner product on $T_{p}(M)$. If $v = 1$ and $n \geq 2$, M is a Lorentz manifold.

Fix the notation

$$\varepsilon_{i} = \begin{cases} -1 & \text{for } 1 \leq i \leq v, \\ +1 & \text{for } v+1 \leq i \leq n \end{cases}$$

Then the metric of R_{n}^{v} can be written

$$g = \sum \varepsilon_{i} du_{i} \otimes du_{i}.$$

A tangent vector v to M is

- spacelike if $<v,v> > 0$ or $<v,v> = 0$,
- null if $<v,v> = 0$ and $v \neq 0$,
- timelike if $<v,v> < 0$ [1]
Let \(M \) and \(\bar{M} \) are two hypersurfaces in \(E_{1}^{n+1} \) with unit normal vector \(N \) of \(M \).

\[
N = \sum_{i=1}^{n} \alpha_{i} \frac{\partial}{\partial x_{i}}
\]

where each \(\alpha_{i} \) is a \(C^{\infty} \) function of \(M \). If there is a function \(f \), from \(M \) to \(\bar{M} \) such that

\[
f: M \rightarrow \bar{M}
\]

\[
P \rightarrow f(P) = P + rN_{P}
\]

then \(\bar{M} \) is called parallel hypersurfaces of \(M \), where \(r \in \mathbb{R} \).[1]

\(S \) denotes the shape operator on \(M \), at \(P \in M \). The function \(H \) defined by

\[
H: M \rightarrow \mathbb{R}
\]

\[
P \rightarrow H(P) = \text{Trace} \, S(P)
\]

is called the mean curvature function of \(M \) and the real number \(H(P) \) is called mean curvature of \(M \) at the point \(P \). [3]

The function \(K \) defined by

\[
K: M \rightarrow \mathbb{R}
\]

\[
P \rightarrow K(P) = \epsilon \text{det} \, S(P)
\]

is called the Gaussian curvature function of \(M \) and the real number \(K(P) \) is called Gaussian curvature of \(M \) at the point \(P \). [3]

Definition:

Let \(M \) be a hypersurfaces in \(E_{1}^{n+1} \) and \(T_{M}(P) \) be a tangent space on \(M \), at \(P \in M \). If \(S_{P} \) denotes the shape operator on \(M \), then

\[
S_{P}: T_{M}(P) \rightarrow T_{M}(P)
\]

is a linear mapping. If we denote the characteristic vectors by \(k_{1}, k_{2}, \ldots, k_{n} \) and the corresponding characteristic vectors by \(x_{1}, x_{2}, \ldots, x_{n} \) of \(S_{P} \) then \(k_{1}, k_{2}, \ldots, k_{n} \) are the principal curvatures and \(x_{1}, x_{2}, \ldots, x_{n} \) are the principal directions of \(M \), at \(P \in M \). On the other hand, if we use the notions \(\epsilon_{i} = +1 \)

\[
K_{1}^{(n)}(k_{1}, k_{2}, \ldots, k_{n}) = \epsilon_{1}k_{1} + \sum_{i=2}^{n} \epsilon_{i}k_{i}
\]

\[
K_{2}^{(n)}(k_{1}, k_{2}, \ldots, k_{n}) = \sum_{i=1<j}^{n} \epsilon_{i}k_{i}k_{j} + \sum_{i\neq j}^{n} \epsilon_{i}k_{i}k_{j}
\]

\[
K_{3}^{(n)}(k_{1}, k_{2}, \ldots, k_{n}) = \sum_{i=1<j<t}^{n} \epsilon_{i}k_{i}k_{j}k_{t} + \sum_{i\neq j<t}^{n} \epsilon_{i}k_{i}k_{j}k_{t}
\]

\[\vdots\]

\[
K_{n}^{(n)}(k_{1}, k_{2}, \ldots, k_{n}) = \epsilon_{1} \prod_{i=1}^{n} k_{i}
\]

then the characteristic polynomial of \(S(P) \) becomes
\[P_s(P)(k) = k^n + (-1)K_1^{(n)} k^{n-1} + \ldots + (-1)^n K_n^{(n)} \]

and \(K_1, K_2, \ldots, K_n \) are uniquely determined, where the functions \(K_i \) are called the higher ordered Gaussian curvatures of the hypersurface \(M \).

Theorem 1:

Let \(M \) be a hypersurfaces in \(\mathbb{E}^{n+1} \) and \(K_1, K_2, \ldots, K_n \) are called the higher order Gaussian curvatures and \(k_1, k_2, \ldots, k_n \) are the principal curvatures at the point \(f(P) \in M \). Let us define a function \(\varepsilon_i = +1 \) and \(\varepsilon_1 = \pm 1 \) (i≠+1)

\[\varphi: M \to \mathbb{R} \]

\[P \to \varphi(P) = \varphi(r, k_1, k_2, \ldots, k_n) \]

\[= \prod_{i=1}^{n} (1 + \varepsilon_i r k_i) \]

such that \(\varphi \) function is

\[\varphi(r, k_1, k_2, \ldots, k_n) = 1 + r K_1 + r^2 K_2 + \ldots + r^n K_n. \]

\(1 \leq i \leq n. \)

Proof:

We prove the theorem by induction method.

a) If \(X_0 \) is spacelike \(\varepsilon_1 = +1 \), for \(n = 1 \), the theorem holds. Actually,

\[\varphi(r, k_1, k_2, \ldots, k_n) = \prod_{i=1}^{n} 1 + \varepsilon_i r k_i \]

\[= 1 + r k_1 \]

\[= 1 + r \sum_{i=1}^{n} \varepsilon_i k_i \]

\[= 1 + r K_1 \]

Now suppose that the theorem holds for \(n - 1 \) and show that is true for \(n \):

\[\varphi(r, k_1, k_2, \ldots, k_n) = \prod_{i=1}^{n-1} (1 + \varepsilon_i r k_i) \]

\[= 1 + r \sum_{i=1}^{n-1} k_i + r^2 \sum_{i<j}^{n-1} k_i k_j + \ldots + r^{n-1} \prod_{i=1}^{n-1} k_i \]

\[= 1 + r K_1 + r^2 K_2 + \ldots + r^{n-1} K_{n-1} \]

For \(n \), both sides of the equation is multiplied by \((1 + r k_n)\)

How to Cite this Article: Ayşe Yavuz, F. Nejat Ekmekci, "On The Generalized Gaussian and Mean curvatures in \(\mathbb{E}^{n+1} \)", Science Journal Of Mathematics and Statistics, Volume 2016, Article ID: sjms-111, 8 Pages, doi: 10.7237/sjms/111
\[
\left(\prod_{i=1}^{n-1} (1 + r k_i) \right) (1 + rk_n) = \left(1 + r \sum_{i=1}^{n-1} k_i + r^2 \sum_{i<j}^{n-1} k_i k_j + \cdots + r^{n-1} \prod_{i=1}^{n-1} k_i \right) (1 + rk_n)
\]

\[
= 1 + r \left(\sum_{i=1}^{n-1} k_i + k_n \right) + r^2 \left(\sum_{i<j}^{n-1} k_i k_j + k_n \sum_{i=1}^{n-1} k_i \right) + \cdots + r^{n-1} k_n \prod_{i=1}^{n-1} k_i
\]

and we have

\[
\prod_{i=1}^{n-1} (1 + r k_i) = 1 + r \sum_{i=1}^{n-1} k_i + r^2 \sum_{i<j}^{n-1} k_i k_j + \cdots + r^{n-1} \prod_{i=1}^{n-1} k_i
\]

\[
\varphi(r, k_1, k_2, \ldots, k_n) = 1 + r K_1 + r^2 K_2 + \cdots + r^n K_n
\]

b) If \(X_p \) is timelike \(\varepsilon_1 = -1 \), for \(n = 1 \), the theorem holds. Actually,

\[
\varphi(r, k_1, k_2, \ldots, k_n) = \prod_{i=1}^{n-1} 1 + \varepsilon_i r k_i
\]

\[
= 1 + \varepsilon_1 r k_1
\]

\[
= 1 + r \sum_{i=1}^{n-1} \varepsilon_i k_i
\]

\[
= 1 + r K_1
\]

Now suppose that the theorem holds for \(n - 1 \) and show that is true for \(n \):

\[
\varphi(r, k_1, k_2, \ldots, k_n) = \prod_{i=1}^{n-1} 1 + \varepsilon_i r k_i
\]

\[
= 1 + r \sum_{i=1}^{n-1} \varepsilon_i k_i + r^2 \sum_{i<j}^{n-1} \varepsilon_i k_i k_j + \cdots + r^{n-1} \prod_{i=1}^{n-1} \varepsilon_i k_i
\]

\[
= 1 + r K_1 + r^2 K_2 + \cdots + r^{n-1} K_{n-1}
\]

For \(n \), both sides of the equation is multiplied by \(1 + r \varepsilon_n k_n \)

\[
\left(\prod_{i=1}^{n-1} (1 + r \varepsilon_i k_i) \right) (1 + r \varepsilon_n k_n) = \left(1 + r \sum_{i=1}^{n-1} \varepsilon_i k_i + r^2 \sum_{i<j}^{n-1} \varepsilon_i k_i k_j + \cdots + r^{n-1} \prod_{i=1}^{n-1} \varepsilon_i k_i \right) (1 + r \varepsilon_n k_n)
\]

\[
= 1 + r \left(\sum_{i=1}^{n-1} \varepsilon_i k_i + \varepsilon_n k_n \right) + r^2 \left(\sum_{i<j}^{n-1} \varepsilon_i k_i k_j + \varepsilon_n k_n \sum_{i=1}^{n-1} \varepsilon_i k_i \right) + \cdots + r^n \varepsilon_n k_n \prod_{i=1}^{n-1} \varepsilon_i k_i
\]

and we have

\[\varphi(r, k_1, k_2, \ldots, k_n) = 1 + rK_1 + r^2K_2 + \cdots + r^nK_n \]

Theorem 2:
Let \(M \) be a hypersurfaces in \(E_1^{n+1} \) and \(K_1, K_2, \ldots, K_n \) are called the higher order Gaussian curvatures and \(k_1, k_2, \ldots, k_n \) are the principal curvatures at the point \(f(P) \in M \). \(K \) and \(\overline{H} \) are generalized Gaussian and mean curvatures of \(M \) at the point \(f(P) \). Suppose the function
\[\varphi: M \to R \]
\[P \to \varphi(P) = \varphi(r, k_1, k_2, \ldots, k_n) \]
\[= \prod_{i=1}^{n} (1 + \varepsilon_i r k_i) \]
such that \(\varepsilon_i = +1 \) and \(\varepsilon_1 = \pm 1 \) (i≠+1)

Then we have
\[K = \varepsilon \frac{\partial^n \varphi(r, k_1, k_2, \ldots, k_n)}{\partial r^n n! \varphi(r, k_1, k_2, \ldots, k_n)} \]
and
\[\overline{H} = \frac{1}{n} \frac{\partial \varphi(r, k_1, k_2, \ldots, k_n)}{\partial r \varphi(r, k_1, k_2, \ldots, k_n)} \]

Proof: If \(k \) is principal curvatures of \(M \) at the point \(P \) in direction \(X \), then \(\frac{k}{1 + r k} \) is the principal curvatures of \(\overline{M} \) at the point \(f(P) \) in direction \(f_s(X) \), that is, \(\overline{S}(f_s(X)) = \frac{k}{1 + r k} f_s(X) \) which means that \(f \) preserves principal directions, where \(f_s \) is the differential of \(f \) and we know that [3]
\[\overline{S}(f_s(X_1)) = \frac{k_1}{1 + r k_1} f_s(X_1) \]
\[\overline{S}(f_s(X_2)) = \frac{k_2}{1 + r k_2} f_s(X_2) \]
\[\vdots \]
\[\overline{S}(f_s(X_n)) = \frac{k_n}{1 + r k_n} f_s(X_n) \]
then we know that the shape operator of \(\overline{M} \) is
\[S_r = \begin{bmatrix} \varepsilon_1 k_1 & \cdots & 0 \\ 1 + r \varepsilon_1 k_1 & \ddots & \vdots \\ 0 & \cdots & \varepsilon_n k_n \end{bmatrix} \]
and

How to Cite this Article: Ayşe Yavuz, F. Nejat Ekmekçi, "On The Generalized Gaussian and Mean curvatures in E_\(1^{n+1} \)", Science Journal Of Mathematics and Statistics, Volume 2016, Article ID: sjms-111, 8 Pages, doi: 10.7237/sjms/111
\[K = \det S_r \]
\[= \epsilon \left(\frac{\varepsilon_1 k_1}{1 + r\varepsilon_1 k_1} \cdots \frac{\varepsilon_n k_n}{1 + r\varepsilon_n k_n} \right) \]
\[= \frac{\varepsilon_1 k_1 \varepsilon_2 k_2 \cdots \varepsilon_n k_n}{\prod_{i=1}^{n} (1 + \varepsilon_i r k_i)} \]
\[= \frac{\prod_{i=1}^{n} \varepsilon_i k_i}{\prod_{i=1}^{n} (1 + \varepsilon_i r k_i)} \]

We multiply the right sides of the equation with \(n! \)
\[= \frac{n! \prod_{i=1}^{n} \varepsilon_i k_i}{n! \prod_{i=1}^{n} (1 + \varepsilon_i r k_i)} \]
\[= \frac{\varepsilon}{n! \varphi(r, k_1, k_2, \ldots, k_n)} \]

and we derivate to \(\varphi(r, k_1, k_2, \ldots, k_n) \) order \(n \) according to \(r \)
\[\frac{\partial \varphi(r, k_1, k_2, \ldots, k_n)}{\partial r} = \frac{\partial (1 + rK_1 + r^2 K_2 + \cdots + r^n K_n)}{\partial r} \]
\[= K_1 + 2rK_2 + \cdots + nr^{n-1}K_n \]
\[\frac{\partial^2 \varphi(r, k_1, k_2, \ldots, k_n)}{\partial r^2} = \frac{\partial (K_1 + 2rK_2 + \cdots + nr^{n-1}K_n)}{\partial r} \]
\[= 2K_2 + \cdots + n(n-1)r^{n-2}K_n \]

and we continue to derivation, we have
\[\frac{\partial^n \varphi(r, k_1, k_2, \ldots, k_n)}{\partial r^n} = n! K_n \]

and we obtain with implying equality
\[\bar{K} = \epsilon \frac{\partial^n \varphi(r, k_1, k_2, \ldots, k_n)}{n! \varphi(r, k_1, k_2, \ldots, k_n)} \]

We proof the other equality
\[\bar{H} = \frac{1}{n} \mathcal{I} \mathcal{Z} S_r \]
\[= \frac{1}{n} \left(\frac{\varepsilon_1 k_1}{1 + r\varepsilon_1 k_1} \cdots + \frac{\varepsilon_n k_n}{1 + r\varepsilon_n k_n} \right) \]
\[= \frac{1}{n} \left(\frac{\varepsilon_1 k_1 \prod_{i=2}^{n} (1 + \varepsilon_i r k_i) + \varepsilon_2 k_2 (1 + \varepsilon_1 r k_1) \prod_{i=3}^{n} (1 + \varepsilon_i r k_i) + \cdots + \varepsilon_n k_n \prod_{i=1}^{n-1} (1 + \varepsilon_i r k_i)}{\prod_{i=1}^{n} (1 + \varepsilon_i r k_i)} \right) \]

We derivate according to \(r \)

\[
\frac{\partial \varphi (r, k_1, k_2, \ldots, k_n)}{\partial r} = \frac{\partial \left(\prod_{i=1}^{n} (1 + \epsilon_i r k_i) \right)}{\partial r} \\
= \frac{\partial \left((1 + \epsilon_1 r k_1)(1 + \epsilon_2 r k_2) \ldots (1 + \epsilon_n r k_n) \right)}{\partial r} \\
= \epsilon_1 k_1 (1 + \epsilon_2 r k_2)(1 + \epsilon_3 r k_3) \ldots (1 + \epsilon_n r k_n) \\
+ (1 + \epsilon_1 r k_1) \epsilon_2 k_2 (1 + \epsilon_3 r k_3) \ldots (1 + \epsilon_n r k_n) \\
+ (1 + \epsilon_1 r k_1)(1 + \epsilon_2 r k_2) \epsilon_3 k_3 \ldots (1 + \epsilon_n r k_n) \\
\ldots \\
+ (1 + \epsilon_1 r k_1)(1 + \epsilon_2 r k_2)(1 + \epsilon_3 r k_3) \ldots (1 + \epsilon_{n-1} r k_{n-1}) \epsilon_n k_n \\
= \epsilon_1 k_1 \prod_{i=2}^{n} (1 + \epsilon_i r k_i) + \epsilon_2 k_2 (1 + \epsilon_1 r k_1) \prod_{i=3}^{n} (1 + \epsilon_i r k_i) + \ldots + \epsilon_n k_n \prod_{i=1}^{n-1} (\epsilon_i r k_i)
\]

So we have last equation and we obtain that

\[
\bar{H} = \frac{1}{n} \frac{\partial \varphi (r, k_1, k_2, \ldots, k_n)}{\partial r} / \varphi (r, k_1, k_2, \ldots, k_n).
\]

References

