Some Statistical Analysis for Continuous - Time Stationary

Processes with Missed Data

Eman A. Farag ${ }^{1,2}$ and Mohamed A. Ghazal ${ }^{3}$
${ }^{1}$ Statistical Department, Faculty of Science for Girls, King Abdulaziz University, P.0. Box 80200, Jeddah 21589, Saudi Arabia
${ }^{2}$ Mathematics Department, Faculty of Science, Helwan University, Egypt
E-mail: eamali@kau.edu.sa \& eman farage@yahoo.com
${ }^{3}$ Mathematics Department, Damietta Faculty of Science, Mansoura University, Egypt

Accepted on May 03, 2015

Abstract

In this paper, the statistical analysis for continuoustime stationary processes with missed data is presented. The statistics of this process are constructed. The asymptotic properties (first order, second order and k - th order cumulant) for this process are investigated. The asymptotic distribution for an estimate of the spectral density function is established

Keywords: Time series, asymptotic distribution, missed data, continuous time stationary process, spectral density function, normal distribution.

Introduction

Let $X^{r}(t)=\left\{X_{a}(t), a=\overline{1, r}, t \in \boldsymbol{R}\right\}$ be an r-dimensional continuous time stationary process with mean $m_{a}, a=$ $\overline{1, r}, R_{a a}(\tau), \tau \in \boldsymbol{R}$ the continuous covariance function which is defined by

$$
\begin{gather*}
\boldsymbol{R}_{a a}(\tau)=E\left\{X_{a}(t+\tau) X_{a}(t)\right\}= \\
\int_{R} f_{a a}(\lambda) \exp (i \lambda \tau) d \lambda ; t, \tau \in R \tag{1.1}
\end{gather*}
$$

and the spectral density function $f_{a a}(\lambda), \lambda \in \boldsymbol{R}, \boldsymbol{a}=\overline{1, r}$ which is given by
$f_{a a}(\lambda)=(2 \pi)^{-1} \int_{R} R_{a a}(\tau) \exp (-i \lambda \tau) d \tau, \lambda \in \boldsymbol{R}$.
Consider the statistic:

$$
\begin{equation*}
\widehat{\boldsymbol{m}_{\boldsymbol{a}}}=\frac{1}{T} \int_{0}^{T} X_{a}(t) d t \tag{1.3}
\end{equation*}
$$

Which is constructed by $\mathrm{T}, T=[1, \infty), X_{a}(t)$ is a sequence of observations on $X^{r}(t)$. Let

$$
\begin{equation*}
Y_{a}(t)=X_{a}(t) d_{a}(t), \tag{1.4}
\end{equation*}
$$

is irregularly data on the stationary process $Y^{r}(t), a=$ $\overline{1, r}$ and $d_{a}(t)$ is Bernoulli sequence of random variables, which satisfies

$$
\boldsymbol{d}_{\boldsymbol{a}}(t)= \begin{cases}1 & \text { if } X_{a}(t) \text { observed } \tag{1.5}\\ 0 & \text { otherwise }\end{cases}
$$

Since $P\left\{d_{a}(t)=1\right\}=p_{a}>0, P\left\{d_{a}(t)=0\right\}=q_{a}, p_{a}+$ $q_{a}=1, a=\overline{1, r}$ and

Several authors as e.g. Bloomfield (1970), Brillinger (1970), Marshal (1980) studied the asymptotic time series with missing observations. Ghazal (1999), Ghazal and Farag (1998a) and (1998b) studied the asymptotic time stationary processes with classical methods.

The paper is organized as follows: Estimation of the expectation and its asymptotic distribution is determined in Section 2. Section 3 contains the asymptotic distribution for continuous - time processes with missed data.

2. Estimation of the expectation and its asymptotic distribution

We mention some results, which will be used to prove some theorems.

Theorem 2.1 For estimation $\widehat{m_{a}}$, which is defined by equation (1.3), then we has
$E \widehat{m_{a}}=m_{a}$
(2.1)
$T \operatorname{cov}\left\{\widehat{m_{a}}, \widehat{m_{b}}\right\}=2 \pi \int_{R} f_{a a}(x) \Phi_{T}(x) d x$,
Where
$\Phi_{T}(x)=(2 \pi T)^{-1} \frac{\sin ^{2} x T / 2}{(x / 2)^{2}}$,
(2.3)
$T D \widehat{m_{a}}=2 \pi \int_{R} f_{a a}(x) \Phi_{T}(x) d x$,
(2.4)
for all $x \in \boldsymbol{R}$ and $a, b=\overline{1, r}$.
Proof: Equation (2.1) comes directly by using formula (1.3). From equation (1.1), we get
$\operatorname{cov}\left(\widehat{m_{a}}, \widehat{m_{b}}\right)$
$=T^{-2} \int_{\boldsymbol{R}} f_{a b}(x)\left\{\int_{0}^{T} \exp \left(i x t_{1}\right) d t_{1} \int_{0}^{T} \exp \left(-i x t_{2}\right) d t_{2}\right\} d x$
Since
$\int_{0}^{T} \exp (i x t) d t=\frac{\sin x T / 2}{x / 2} \exp (i x T / 2)$,
and by using formula (2.3), then equation (2.2) is obtained. Equation (2.4) comes directly by putting $a=b$ in equation (2.2). Now, the proof of the theorem is completed.

Now, theorem (2.2) below shall study the properties of the kernel $\Psi_{T}(x)$ on $\boldsymbol{R}, x \in \boldsymbol{R}$ which is defined by:
$\Psi_{T}(x)=(2 \pi T)^{-1}\left|\int_{0}^{T} \exp (-i x t) d t\right|, T=1,2$,
Theorem 2.2 For any $x \in \boldsymbol{R}$, the function $\Psi_{T}(x)$ is the kernel on \boldsymbol{R} that satisfy the following properties
(1) $\int_{-\infty}^{\infty} \Psi_{T}(x) d x=1, x \in \boldsymbol{R}$.
(2) $\lim _{T \rightarrow \infty} \int_{-\infty}^{-\delta} \Psi_{\mathrm{T}}(\mathrm{x}) \mathrm{dx}=\lim _{T \rightarrow \infty} \int_{\delta}^{\infty} \Psi_{\mathrm{T}}(\mathrm{x}) \mathrm{dx}=0$, for any $\delta>, x \in \boldsymbol{R}$,
(3) $\quad \lim _{T \rightarrow \infty} \int_{-\delta}^{\delta} \Psi_{\mathrm{T}}(\mathrm{x}) \mathrm{dx}=1$, for all $\delta>0, x \in \boldsymbol{R}$.
(2.8)

Proof: The proof is omitted.
Lemma 2.1 If the function $g(x), x \in \boldsymbol{R}$ is bounded and continuous at a point $x=0$ and the function $\Psi_{T}(x)$, $x \in \boldsymbol{R}$ satisfies the properties of Theorem 2.2, then
$\lim _{T \rightarrow \infty} \int_{-\infty}^{\infty} g(x) \Psi_{T}(x) d x=g(0)$.

Proof: By using formula (2.6), we get

$$
\begin{aligned}
& \left|\int_{-\infty}^{\infty} g(x) \Psi_{T}(x) d x-g(0)\right| \leq \int_{-\infty}^{-\delta}|g(x)-g(0)|\left|\Psi_{T}(x)\right| d x+ \\
& \int_{-\delta}^{\delta}|g(x)-g(0)|\left|\Psi_{T}(x)\right| d x+
\end{aligned}
$$

$$
+\int_{\delta}^{\infty}|g(x)-g(0)|\left|\Psi_{T}(x)\right| d x=A_{1}+A_{2}+A_{3}
$$

Now, from continuity of $g(x)$ at $x=0$, we get
$A_{2} \leq \varepsilon \int_{-\infty}^{\infty}\left|\Psi_{T}(x)\right| d x$. Then, $A_{2} \leq \varepsilon$
Now, A_{2} is very small according any ε is very small. Then $A_{2}=0$. Suppose that $g(x), x \in \boldsymbol{R}$ is bounded by constant M , then according to formula (2.7),
$A_{1} \leq 2 M \int_{-\infty}^{-\delta}\left|\Psi_{T}(x)\right| d x \xrightarrow[T \longrightarrow \infty]{ } 0 . \quad$ Similarly, $A_{3} \longrightarrow \xrightarrow{\longrightarrow} 0$.

Therefore, $\int_{-\infty}^{\infty} g(x) \Psi_{T}(x) d x-g(0) \xrightarrow[T \longrightarrow \infty]{ } 0$, this completes the proof of the theorem.

Theorem 2.3 If the spectral function $f_{a b}(x), x \in \boldsymbol{R}$, $a, b=\overline{1, r}$ is bounded and continuous at a point $x=0$, then
(1) $\lim _{T \longrightarrow \infty} T \operatorname{cov}\left\{\hat{m}_{a}, \hat{m}_{b}\right\}=2 \pi f_{a b}(0), a, b=\overline{1, r}$
(2) $\lim _{T} T D \hat{m}_{a}=2 \pi f_{a a}(0), a=\overline{1, r}$

Proof: The proof can be easily obtained by using lemma 2.1.

Theorem 2.4 Let $X^{r}(t)=\left\{X_{a}(t), t \in \boldsymbol{R}, a=\overline{1, r}\right\}$,
be r - dimensional continuous stationary process with mean zero. Then the statistic

$$
\begin{equation*}
\Theta_{a}(T)=\frac{1}{\sqrt{T}} \int_{0}^{T} X_{a}(t) d t \tag{2.12}
\end{equation*}
$$

is asymptotically normal distribution with mean zero and dispersion given by
$\lim _{T \longrightarrow \infty} D \Theta_{a}(T)=2 \pi f_{a a}(0), a=\overline{1, r}$.

Proof: We begin by noting that $E\{\Theta(T)\}=0$ according to the condition that $E X_{a}(t)=0, a=\overline{1, r}$. Next we note from formula (1.2) that
$\operatorname{cov}\left\{\Theta_{a}(T), \Theta_{b}(T)\right\}=\frac{1}{T} \int_{-\infty}^{\infty} f_{a b}(x) \int_{0}^{T} \int_{0}^{T} \exp \left\{i x\left(t_{1}-t_{2}\right)\right\}$ $=$

Now, we will study the moments and the asymptotic By using equation (2.5), then
$\operatorname{cov}\left\{\Theta_{a}(T), \Theta_{b}(T)\right\}=2 \pi \int_{-\infty}^{\infty} f_{a b}(x) \Psi_{T}(x) d x$.
Taking the limits on both sides and then by using lemma 2.1 and then putting $a=b$, we get

$$
\lim _{T \longrightarrow \infty} D\left\{\Theta_{a}(T)\right\}=2 \pi f_{a a}(0), a=\overline{1, r}
$$

Finally,
$\operatorname{cum}\left\{\Theta_{a_{1}}(T), \ldots, \Theta_{a_{k}}(T)\right\}=$
$T^{-k / 2} \int_{0}^{T} \ldots \int_{0}^{T} \operatorname{cum}\left\{X_{a_{1}}(t), \ldots, X_{a_{k}}(t)\right\} d t_{1} \ldots d t_{k}$.
$\operatorname{cum}\left\{\Theta_{a_{1}}(T), \ldots, \Theta_{a_{k}}(T)\right\}=$
$T^{-k / 2} \int_{0}^{T} \ldots \int_{0}^{T} c_{a_{1} \ldots a_{k}}\left(t_{1}-t_{k}, \ldots, t_{k-1}-t_{k}\right) d t_{1} \ldots d t_{k}$

Putting $t_{1}-t_{k}=u_{1}, \ldots, t_{k-1}-t_{k}=u_{k-1}$, then
$\left|\operatorname{cum}\left\{\Theta_{a_{1}}(T), \ldots, \Theta_{a_{k}}(T)\right\}\right| \leq T^{-k / 2}$
$\int_{0}^{T} \int_{-T}^{T} \ldots \int_{-T}^{T}\left|c_{a_{1} \ldots a_{k}}\left(u_{1}, \ldots, u_{k-1}\right)\right| d u_{1} \ldots d u_{k-1} d t$.

Suppose

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty}\left|c_{a_{1} \ldots a_{k}}\left(u_{1}, \ldots, u_{k-1}\right)\right| d u_{1} \ldots d u_{k-1}<\infty, k=2,3, \ldots R_{a a}^{\prime}(\tau)=E X_{a}(t+\tau) X_{a}(t) E d_{a}(t+\tau) d_{a}(t)- \\
& E X_{a}(t+\tau) E X_{a}(t) E d_{a}(t+\tau) E d_{a}(t) .
\end{aligned}
$$

Since

$$
\begin{equation*}
E X_{a}(t+\tau) X_{b}(t)=R_{a b}(\tau)+m_{a}^{2}, \tag{3.4}
\end{equation*}
$$

Then
Proof: Formula (3.5) comes directly from equation (1.4).

$$
R_{a a}^{\prime}(\tau)=\left\{\begin{array}{l}
E X_{a}(t) X_{a}(t) E d_{a}(t) d_{a}(t)-E X_{a}(t) E X_{a}(t) \begin{array}{l}
E 0 d_{a}(q) y \\
\text { the definition of the dispersion to get }
\end{array} \\
E X_{a}(t+\tau) X_{a}(t) E d_{a}(t+\tau) d_{a}(t)-m_{a}^{2} p_{a}^{2} \overline{m_{a}}=\frac{1}{T^{2} p_{a}^{2}} \int_{0}^{T} \int_{0}^{T}\left\{E Y_{a}\left(t_{1}\right) Y_{a}\left(Y_{a}\left(t_{2}\right)-E Y_{a}\left(t_{1}\right) E Y_{a}\left(t_{2}\right)\right\} d t_{1}\right.
\end{array}\right.
$$

By using equation (3.4) and properties of $d_{a}(t), a=\overline{1, r}$, we have

By using equations (1.4) and (3.2), we get
$R_{a a}^{\prime}(\tau)= \begin{cases}\left(R_{a a}(0)+m_{a}^{2}\right) p_{a}-m_{a}^{2} p_{a}^{2}, & \tau=0 \\ \left(R_{a a}(\tau)+m_{a}^{2}\right) p_{a}^{2}-m_{a}^{2} p_{a}^{2}, & \tau \neq 0\end{cases}$
$\overline{m_{a}}=\frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{T} R_{a a}\left(t_{1}-t_{2}\right) d t_{1} d t_{2}+\frac{R_{a a}(0)+m_{a}^{2} q_{a}}{T p_{a}}$
By using equation (1.1), then formula (3.7) is obtained and the proof is completed.

Then formula (3.2) is obtained. Finally, from the definition of spectral density and equation (3.2), we get

Now, we will study the limiting distribution for the statistic defined by (3.5).

$$
\begin{aligned}
& f_{a a}^{\prime}(\lambda)=(2 \pi)^{-1}\left\{\left[p_{a} R_{a a}(0)+m_{a}^{2} p_{a} q_{a}\right]+p_{a}^{2} R_{a d}(\tau) \exp (-i \lambda \tau) \text { Corollary 3.1 } \text { Let } \overline{m_{a}}\right. \text { be defined by equation (3.5). If }
\end{aligned}
$$

$$
\begin{align*}
& \left.+\quad p_{a}^{2} \int_{-\infty}^{\infty} R_{a a}(\tau) \exp (-i \lambda \tau) d \tau\right\}= \\
& (2 \pi)^{-1}\left\{\left[p_{a} R_{a a}(0)+m_{a}^{2} p_{a} q_{a}\right]+p_{a}^{2} R_{a a}(0)+2 \pi p_{a}^{2} f_{a a}^{T}(\lambda)\right\}^{\lim } \\
& \lambda=0 \text { and bounded on } \boldsymbol{R} \text { then } \\
& (2 \pi)^{-1}\left\{\left[p_{a} R_{a a}(0)+m_{a}^{2} p_{a} q_{a}\right]+p_{a}^{2} R_{a a}(0)+2 \pi p_{a}^{2} f_{a a}^{T}(\lambda)\right\}^{b} \tag{3.8}
\end{align*}
$$

$$
\stackrel{=}{p_{a}^{2} f_{a a}(\lambda)+(2 \pi)^{-1} p_{a} q_{a} R_{a a}(0)+(2 \pi)^{-1} m_{a}^{2} p_{a} q_{a}}
$$

Then equation (3.3) is obtained and then the proof is completed.

Theorem 3.1 Let
$\overline{m_{a}}=\frac{1}{T p_{a}} \int_{0}^{T} Y_{a}(t) d t$,
(3.5)

Then
$E \overline{m_{a}}=m_{a}$,
(3.6)
$D \overline{m_{a}}=\frac{1}{T p_{a}}\left[\int_{-\infty}^{\infty} f_{a a}(y) d y+m_{a}^{2} q_{a}\right]+\frac{2 \pi}{T} \int_{-\infty}^{\infty} f_{a a}(y) \Phi_{T}(y) d y^{\begin{array}{c}\text { intervals observation, The Egyptian Statistical Journal of ISSR, } \\ \text { Cairo University, vol. 42, No. 2, 1998b, pp. 197-214. }\end{array}}$ 570.
where $\Phi_{T}(y)$ is defined by equation (2.3).

