Study the Efficacy of Folic Acid Supplementation on Hepatotoxicity Induced by Hyperhomocysteinemia in Male Rats

Maha . A. Al-Qaraawi

Department of Biology, Faculty of Sciences at Riyadh, Princess Noura University, Saudi Arabia.
Mobil:0096552133133
Email: maha_qaraawi@hotmail.com

ABSTRACT

Increased serum homocysteine (Hcy) can induce liver diseases and can play a role in hepatic disorders. The purpose of the present study therefore was to investigate the relationship between serum hyperhomocysteinemia (HHcy) induced by methionine administration, folic acid and liver functions. The present study was designed to induce hyperhomocysteinemia (HHcy) in male rats. Also, to evaluate, the effect of (HHcy) as a risk factor for liver disorder and folic acid supplementation on serum levels of Hcy, alanine transaminase (AST), aspartate transaminase (AST), lactate dehydrogenase (LDH), albumin, globulin, and albumin/globulin ratio and total protein. In this work 50 male albino rats were used and divided into five groups. The first served as control, the second and third group received two different dose of L-methionine, the fourth and fifth group received fortified diet with folic acid powder plus L-methionine. The results showed that homocysteine levels in rats received low and high dose of methionine were higher than in the control group, and increased activity of serum AST with low and high dose of methionine, while LDH significantly decreased in high dose treated rats compared to control group. Serum level of proteins, albumin and globulin significantly decreased in rats received low and high dose of methionine compared with control group. In rats supplemented with folic acid we found an increased activity of AST in low dose of methionine treated rats, while serum ALT activity increased accompanied with decreased LDH activity in low and high dose of methionine in both methionine treated groups. Serum level of proteins, albumin and globulin significantly decreased in rats received low dose of methionine and supplemented with folic acid when compared with low dose treated rats, while rats treated with folic acid and high dose of methionine a significant increase in total proteins, albumin, compared to high methionine treated groups. A positive correlation was seen between the activities of transferases in serum of HHcy rats. It can be concluded that hyperhomocysteinemia may play a role in hepatic disorders. The purpose of the present study therefore was to investigate the relationship between serum hyperhomocysteinemia, are correlated with hepatic fibrosis (Woo et al., 2006, Park et al., 2008 and Einollahi et al., 2011) One of the mechanisms underlying homocysteine-mediated organ dysfunction results from induction of cell cycle arrest, apoptosis, and cell injury (Hirashima et al., 2010). Liver plays a central role in homocysteine metabolism. Impaired liver function has been associated with elevated plasma levels of homocysteine (Robert, et al., 2005). Homocysteine has been shown to enhance hepatic lipid metabolism via transcription factor, sterol regulatory elements- binding protein -1f (Alam, et al. (2009) and Ji, C. and Kaplowitz, N. (2003) In mice fed with methionine promotes oxidative stress, leading to liver injury (Park, et al., 2008) and Armada, et al. (2012). Elevated homocysteine levels are defined as hyperhomocysteinemia (HHcy), a disorder that is associated with hepatic fibrosis. Recent studies have shown that HHcy promotes hepatic injury by increasing oxidative stress (Hamelet, et al., 2007). Although homocysteine induces cell cycle arrest in a variety of different cell types, it is not known whether HHcy has a definitive role in hepatocyte proliferation. Our results demonstrated that rats with HHcy exhibited an impairment in liver, as measured by liver enzymes activity and proteins. Also, our results indicated that folic acid administration mediated inhibitory effect of homocysteine on liver function. These findings provide evidence that impairment of liver by HHcy may result in delayed recovery from liver injury induced by homocysteine itself.

KEYWORDS: Homocysteine, folic acid, methionine, liver cirrhosis, hepatic disorders.

INTRODUCTION

Although hepatocytes are rarely replicate in the normal adult liver, they are able to reenter the cycle and proliferate after liver damage caused by ischemia, chemical compounds or hepatitis(Remkova and Remko, 2009). Impaired liver regeneration can be an important clinical complication of the pathogenesis of liver failure, cirrhosis severe steatosis, and liver cancer (Shinohara et al., 2010). Homocysteine is formed as an intermediate in sulfur amino acid metabolism. Elevated levels of circulating homocysteine, a condition known as hyperhomocysteinemia, are correlated with hepatic fibrosis (Woo et al., 2006, Park et al., 2008 and Einollahi et al., 2011) One of the mechanisms underlying homocysteine-mediated organ dysfunction results from induction of cell cycle arrest, apoptosis, and cell injury (Hirashima et al., 2010). Liver plays a central role in homocysteine metabolism. Impaired liver function has been associated with elevated plasma levels of homocysteine (Robert, et al., 2005). Homocysteine has been shown to enhance hepatic lipid metabolism via transcription factor, sterol regulatory elements- binding protein -1f (Alam, et al. (2009) and Ji, C. and Kaplowitz, N. (2003) In mice fed with methionine promotes oxidative stress, leading to liver injury (Park, et al., 2008) and Armada, et al. (2012). Elevated homocysteine levels are defined as hyperhomocysteinemia (HHcy), a disorder that is associated with hepatic fibrosis. Recent studies have shown that HHcy promotes hepatic injury by increasing oxidative stress (Hamelet, et al., 2007). Although homocysteine induces cell cycle arrest in a variety of different cell types, it is not known whether HHcy has a definitive role in hepatocyte proliferation. Our results demonstrated that rats with HHcy exhibited an impairment in liver, as measured by liver enzymes activity and proteins. Also, our results indicated that folic acid administration mediated inhibitory effect of homocysteine on liver function. These findings provide evidence that impairment of liver by HHcy may result in delayed recovery from liver injury induced by homocysteine itself.

Materials and Methods:– Chemicals

1- L-Methionine : supplied by Sigma – Aldrich Company. The chosen dose was 1 g/kg b wt (Papandreou, et al., 2010)
2- Folate : supplied by Sigma – Aldrich Company. The chosen dose was 19 g/ kg diet (Givvimani, et al., 2011)

Animal groups

The study was conducted on 50 male albino rats, weighing ~ 200 g. Rats were maintained on commercial rat chow and water ad libitum and allowed to adapt to the prevailing environment for two weeks prior to the beginning of the experiment in the laboratory. The animals were divided into equal five group as follows: The first group (I): served as control group. The second group (II) received L- methionine in a dose of 1g/kg b wt dissolved in drinking water to induce hyperhomocysteineemia(HHcy)).

*The third group(111) received L- methionine in doses 2g/kg dissolved in drinking water to induce hyperhomocysteineemia (Papandreou, et al.(2010).
*The fourth group (IV) received L-methionine in doses 1g/kg dissolved in drinking water and supplemented with folic acid in a dose 19g/kg diet (Givvimani, et al, 2011)

*The fifth group (V) received L-methionine in doses 2g/kg dissolved in drinking water and supplemented with folic acid in a dose 19g/kg diet (Givvimani, et al, 2011).

Sample preparation

Blood samples were collected at the end of experimental period (8 weeks) for biochemical analysis. Blood samples were obtained from retro-orbital sinus of an over night fasted rats under light ether anesthesia according [Blasco, et al, (2005)], then centrifuged. The separated sera were analyzed for estimation of, homocysteine (Bosy-Westphal, et al, (2003), ALT, AST and LDH activity, total proteins, albumin, globulin and albumin /globulin ratio.

Statistical Analysis:-

The data were analyzed using SPSS program version 16. The analysis of covariance (one way ANOVA) was used to detect the differences in the mean between the treated groups and the control and between supplemented group with folate and methionine treated groups. The mean differences is significant at P < 0.05.

Results:

The results showed that homocysteine levels in rats received low and high dose of methionine (group II&III) were higher than in the control group (group I) (Table 1&Figure 1), and had increased activity of serum AST with low and high dose of methionine, while LDH significantly decreased in high dose treated rats compared to control group (table 2&figure 2). Serum level of proteins, albumin and globulin significantly decreased in rats received low and high dose of methionine compared with control group (table 3&figure 3). In rats supplemented with folic acid we found an increased activity of AST in low dose of methionine treated rats, while serum ALT activity increased accompanied with decreased LDH activity in low and high dose of methionine compared to both methionine treated groups. Serum level of proteins, albumin and globulin significantly decreased in rats received low dose of methionine and supplemented with folic acid when compared with low dose treated rats, while rats treated with folic acid and high dose of methionine a significant increase in total proteins, albumin, compared to high methionine treated groups. A positive correlation was seen between the activities of transferases in serum of HHcy rats.

Discussion:

Hyperhomocysteinemia is a disorder of methionine metabolism, in which a liver plays a role: it may be frequently due to nutrient deficiencies, particularly low folate status (Remkova and Remko, 2009).

In the present study methionine in both doses caused a significant increase in serum Hcy and activities of AST, ALT with significant decrease in the activity of LDH compared with control group. Plasma concentrations of homocysteine is controlled by two metabolic pathways: the remethylation and transulfuration pathways. Remethylation of homocysteine requires the enzymes 5, 10 – methylenetetrahydrofolate reductase (5,10-MTHFR) and methionine synthase. transulfuration is dependent on cystathionine B-synthase (CBS) enzyme activity. Deficiencies in any of these enzymes and/or increased substrate for HCY metabolism elevates in metabolized intracellular HCY, which is exported from the cell into plasma (Symons, et al., 2006 and Selicharoval et al 2013). The marked significant increase in AST,ALT were consistent with the finding of (Remkova. and Remko, 2009) who reported that, hyperhomocysteinemia causes oxidative stress is considered the main cause of hepatotoxicity which leading to impairment of liver metabolism and local changes in vessel integrity. Although Hcy is produced in every cell as an intermediate of the methionine cycle, the liver contributes the major portion found in circulation, and fatty liver is a common finding in homocysteinemic patients (DiBello, et al, 2010).

The study of Di Bello et al., (2010) showed that HHcy, whether caused by a genetic mutation or diet, alters the abundance of several liver proteins, involved in Hcy/methionine metabolism and antioxidant defense. The result of Shinohara et al, (2010) reported that high methionine diet induced less steatosis and ALT increase with HHcy in rats than in mice which is due to endoplasmic reticulum stress and liver injury.

Recent studies have shown that elevated Hcy levels are a disorder that is associated with hepatic fibrosis and promotes hepatic injury by increasing oxidative stress (Liu, et al, 2010). Hyperhomocysteinemia stimulated hepatic 3-hydroxyl. 3 methyl glutaryl coenzyme A (HMG-CoA) reductase leading to hepatic lipid accumulation and liver injury (Wu, et al, 2011). HHcy unleashes mediators of inflammation such as NF kappa B, IL-IBeta,IL-6, and IL-8, increases production of intracellular superoxide anion causing oxidative stress and induces endoplasmic reticulum (ER) stress which can explain many processes of Hcy promoted cell injury such as apoptosis, fat accumulation and inflammation, and ER stress may be involved in liver diseases such as viral hepatitis (Ji and Kaplowitz, 2004).

In agreement with the present study Park, et al., (2008), who found that HHcy induced by methionine supplementation promotes oxidative stress and nuclear factor kappa B activation in liver of mice when fed a 2% methionine and low folate diet for 12 weeks, with normal hepatic function while hepatic triglyceride concentration was lowered by methionine feeding.

In contrast with the present data the findings of (Einollahi, et al, 2011) they revealed no significant correlation between Hcy concentration and ALT or AST concentration. ALT is a more proper marker of hepatic damage than AST as the activity of ALT resides mainly in the liver, while AST indicates intra and extra hepatic injury (Micle, et al., 2012). The mechanism of HHcy induced acceleration of lipid peroxidation leading to organelle membrane dysfunction and subsequent cell injury and death. Also HHcy catalyzed generation of reactive oxygen species which is responsible for initiating the peroxidative reaction.

On the other hand, significant reduction in the activity of serum LDH in the present study after methionine
administration may be due to ischemic hepatitis (Hirashima, et al., 2010) induced by HHcy. The decrease in LDH concentration could explain the mechanisms of HHcy induced toxicity by stimulating the release of reactive intermediate species from macrophages (Koz, et al., 2010).

Findings from the present study indicate that HHcy with low independently impair vascular function . Mechanisms responsible for these observations are that HHcy increase oxidative stress in general and vascular 02 in particular. As regard to the marked decrease in protein, albumin and globulin in rats subjected to large dose of methionine may due to decreased synthesis of albumin and globulin in advanced liver disease. Also, several studies a urged that, oxidative stress was an additional process that account for hepato-cellular damage and releasing inflammatory mediators (Jia, et al.,2011). Hyperhomocysteinemia, whether caused by a genetic mutation or diet, alters the abundance of several liver proteins involved in homocysteine / methionine metabolism and antioxidant defence (Devika Rani, et al., 2008).

In the present study supplementation of folic acid to methionine treated rats we found an increased activity of AST in low dose of methionine treated rats, while serum ALTactivity increased accompanied with decreased LDH activity in low and high dose of methionine compared to both methionine treated groups . Serum level of proteins, albumin and globulin significantly decreased in rats received low dose of methionine and supplemented with folic acid when compared with low dose treated rats, while rats treated with folic acid and high dose of methionine a significant increase in total proteins, albumin, compared to high methionine treated groups. A positive correlation was seen between the activities of transferases in serum of HHcy rats. These findings indicate that the elevated level of plasma Hcy may be indicative of much broader and deeper alterations in intracellular methylation dysfunction, and suggest that dietary enrichment with folic acid is essential for the metabolism of Hcy, especially in adult animals. (pogribny et al., 2005).

The study of Papandreou et al., (2010) clouded that folic acid supplementation may reduce tHcy and total cholesterol levels in H Hcy children by modulating the increased cholesterol synthesis in the liver. The findings of (Givvimani et al., 2011) support the notation that metabolic derangement in H Hcy causes the chronic decline or dysfunction in vascular density of liver. Moderate HHcy in common in liver damage suggesting that, although folate deficiencies may have a contribute any role, liver impairment, through changes in methionine metabolism, is the most important mechanism for elevated plasma Hcy found in there patients . (Blasco et al., 2005 and Korinek et al., 2013). The study of Armada et al., (2001) reported that about 8.7% of total Hcy is bound to albumin and tHcy is reduced with folic acid supplementation, and tHcy directly correlate with albumin levels.

In contradiction basal HHcy is seen in 50% of liver cirrhosis and after liver transplantation and Hcy concentration do not change significantly after folate supplementation but postprandial Hcy metabolism improves (Bosy-Westphal, et al., 2003). Also, Matte, et al., (2009) showed a decrease antioxidant defenses and increased lipid peroxidation in liver will amino transferase activities were not altered by Hcy. consistent profile of liver injury elicited by Hcy which could contribute to explain the mechanism involved in human liver diseases associated to Hcy.

Hcy is a sulfur containing amino acid produced during metabolisms of methinine, elevated Hcy impairs vascular function, including impairment of endothelial function, production of Reactive oxygen species (Ros) and consequent oxidation of low density lipids. Folic acid required for remethylation of Hcy to methionine, are the most important dietary determinants of hcyemia and daily supplementation lowers plasma Hcy levels . Homocysteine levels are significantly increased in liver transplant recipients, therefore a specific treatment with folate for patients after liver transplantation might reduce the risk of complications resulting from HHcy(Akoglu, et al., 2008).

Conclusion

On conclusion, these results suggest that hyperhomocysteinemia can cause liver injury and supplementation of folic acid offers a hepatoprotective effect.

Recommendation

The finding of the present research showed a correlation between homocysteine levels, folic acid which gives information that hyperhomocysteinemia probably due to vitamin deficiency . Folic acid , required for remethylation of homocysteine to methionine, are the most important dietary determinants of homocysteine and daily supplementation typically lowers plasma homocysteine levels and decreasing plasma Hcy levels through diet may be paralleled by a reduction in liver diseases.

Acknowledgment

We express our sincere gratitude and thanks to all those helped me in the completion of this thesis in Qassim university for Science and Arts.

REFERENCES

How to Cite this Article: Maha . A. Al-Qaraawi, “Study the Efficacy of Folic Acid Supplementation on Hepatotoxicity Induced by Hyperhomocysteinemia in Male Rats”, Science Journal of Medicine and Clinical Trials, Volume 2014, Article ID sjmct-100, 9 Pages, 2014. doi: 10.7237/sjmct/100

18. Liu, WH.; Zhao, YS.; Gao, SY.; Li, SD.; Cao, J.; Zhang, QK. and Zou, CG. (2010) : Hepatocyte proliferation during liver regeneration is impaired in mice with methionine diet-induced hyperhomocysteinemia. Am J Pathol. 177(5):2357-65.

19. Matte, C.; Stefanello, FM.; Makedanz, V.; Pederzolli, CD.; Lamaers, ML.; Dutra-Filho, CS.; Dos Santos, MF. and Wyse, AT. (2009) : Homocysteine induced oxidative stress, inflammatory infiltration, fibrosis and reduces glycerogen/glycogen protein content in liver of rats. Int J Dev Neurosci.27(4):337-44.

Table (1) Serum homocysteine levels (mg/dl) of male rats in the control and different treated groups.

<table>
<thead>
<tr>
<th>Group</th>
<th>Parameter</th>
<th>Homocysteine</th>
<th>(Ta) Significant Test</th>
<th>(Tb) Significant Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>I- Control</td>
<td></td>
<td>11.736 ± 870</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>II- Treated with 1g/kg .B.W. Methionine.</td>
<td></td>
<td>42.653 ± 5.075</td>
<td>* .001</td>
<td>263.4 %</td>
</tr>
<tr>
<td>III Treated with 2g/kg .B.W. Methionine.</td>
<td></td>
<td>54.838 ± 6.838</td>
<td>* .001</td>
<td>367.2 %</td>
</tr>
<tr>
<td>IV- Treated with 1g/kg .B.W. methionine and supplemented with folic acid.</td>
<td></td>
<td>42.001 ± 2.781</td>
<td>* .001</td>
<td>257.8 %</td>
</tr>
<tr>
<td>V- Treated with 2g/kg .B.W. methionine and supplemented with folic acid.</td>
<td></td>
<td>29.536 ± 2.106</td>
<td>* .001</td>
<td>* .001</td>
</tr>
</tbody>
</table>

The mean difference is significant at the 0.05 level
(Ta): significant as compared with normal control group.
(Ta): significant as compared with the same dose of methionine treated group.

Table (2) Serum enzyme activity (AST, ALT, and LDH) in male rats in control and treated groups.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Parameter</th>
<th>AST Mean ± S.E</th>
<th>(Ta) Significant Test</th>
<th>(Tb) Significant Test</th>
<th>ALT Mean ± S.E</th>
<th>(Ta) Significant Test</th>
<th>(Tb) Significant Test</th>
<th>LDH Mean ± S.E</th>
<th>(Ta) Significant Test</th>
<th>(Tb) Significant Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>I- Control</td>
<td></td>
<td>71.78 ± 2.31</td>
<td>-----</td>
<td>-----</td>
<td>29.94 ± 1.94</td>
<td>-----</td>
<td>-----</td>
<td>554.55 ± 5 3</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>II- Treated</td>
<td></td>
<td>93.75</td>
<td>-----</td>
<td>32.80 ± .350</td>
<td>-----</td>
<td>324.2 ± .106</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table (3) Serum proteins, albumin, globulin levels (mg/dl) of male rats in the control and different treated groups.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Parameters</th>
<th>Proteins Mean ± S.E</th>
<th>Albumin Mean ± S.E</th>
<th>Globulin Mean ± S.E</th>
<th>A/G ratio Mean ± S.E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Ta) Significant Test</td>
<td>(Tb) Significant Test</td>
<td>(Ta) Significant Test</td>
<td>(Tb) Significant Test</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III-</td>
<td>Treated with 2g/kg B.W. methionine</td>
<td>±3.07 ± .031</td>
<td>±2.16 ± .031</td>
<td>0 ± 28.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>263.4 %</td>
<td>28.49 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV-</td>
<td>Treated with 1g/kg B.W. methionine</td>
<td>99.45 ± 6.91</td>
<td>28.58 ± 87</td>
<td>271.1 ± 23.84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and supplemented with folic acid</td>
<td>.008</td>
<td>.655</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-</td>
<td>Treated with 2g/kg B.W. methionine</td>
<td>108.28 ± 11.76</td>
<td>43.30 ± 2.01</td>
<td>177.5 ± 19.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and supplemented with folic acid</td>
<td>.001</td>
<td>.001</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>84.46 ± 6.14</td>
<td>49.74 ± 3.10</td>
<td>106.7 ± 74.79</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>.202</td>
<td>.001</td>
<td>.001</td>
<td></td>
</tr>
</tbody>
</table>

The mean difference is significant at $p<0.05$
(Ta): significant as compared with normal control group.
(Ta): significant as compared with the same dose of methionine treated group.
<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I- Control rats</td>
<td>6.29±.154</td>
<td>-----</td>
<td>----</td>
<td>3.97±.086</td>
<td>----</td>
<td>2.28±.202</td>
<td>-----</td>
<td>1.78±.198</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>II- Rats treated with 1g/kg. methionine.</td>
<td>6.01±.170</td>
<td>.241</td>
<td>----</td>
<td>3.70±.071</td>
<td>.057</td>
<td>2.31±.171</td>
<td>.894</td>
<td>1.69±.196</td>
<td>.752</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>III- Rats treated with 2g/kg. methionine.</td>
<td>4.86±.155</td>
<td>* .001</td>
<td>----</td>
<td>3.13±.120</td>
<td>* .001</td>
<td>±1.793</td>
<td>* .043</td>
<td>±1.820</td>
<td>.874</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>IV- Rats treated with 1g/kg. methionine & folic acid.</td>
<td>4.50±.148</td>
<td>* .031</td>
<td>----</td>
<td>3.01±.091</td>
<td>* .001</td>
<td>1.37±.112</td>
<td>* .001</td>
<td>2.28±.190</td>
<td>* .085</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>V- Rats treated with 2g/kg. methionine & folic acid.</td>
<td>5.78±.187</td>
<td>* .033</td>
<td>----</td>
<td>3.71±.107</td>
<td>* .061</td>
<td>2.07±.190</td>
<td>.360</td>
<td>1.95±.238</td>
<td>.542</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
</tbody>
</table>

The mean difference is significant at the 0.05 level
(Ta): significant as compared with normal control group.
(Ta): significant as compared with the same dose of methionine treated group
Figure (1) Serum homocysteine levels (mg/dl) of male rats in the control and different treated groups.

Figure (2) Serum AST, ALT, LDH activity (mg/dl) of male rats in the control and different treated groups.
Figure (3) Serum proteins, albumin, globulin, and A/G ratio levels (mg/dl) of male rats in the control and different treated groups.